
dpcode V3.05.0

1

DPLR Package Users Guide

Introduction

The Data-Parallel Line Relaxation (DPLR) CFD code is an MPI-based parallel full three-
dimensional Navier-Stokes CFD solver developed at NASA Ames Research Center. The code
was written explicitly for the fast, robust and accurate solution of high-speed entry problems of
interest to NASA. As such, generalized models for finite-rate reaction kinetics, thermal and
chemical nonequilibrium, accurate high-temperature transport coefficients, and ionized flow
physics are all incorporated into the code. DPLR also includes a large selection of generalized
realistic surface boundary conditions, and “hooks” to enable efficient loose coupling with
external thermal protection system (TPS) material response and shock layer radiation codes. The
numerical methods employed, including the underlying data-parallel line relaxation algorithm,
were chosen and developed to ensure optimal performance on distributed memory parallel
machines. This makes the code widely portable to a variety of architectures, ranging from
dedicated supercomputers to simple LINUX clusters and networked systems of desktop PC’s or
workstations. DPLR continues to evolve as a simulation tool, with new minor releases about
every 2-3 months and major releases about every year. In addition, the code has been written in a
way to encourage third-party modifications or improvements to the underlying package. Indeed,
several of the features offered in v3.05.0 of the package were initially incorporated by third-party
developers.

DPLR consists of four separate executables: DPLR2D (for axisymmetric and two-dimensional
problems), DPLR3D (for three-dimensional problems), FCONVERT for grid pre-processing, and
POSTFLOW for post-processing analysis. The following three chapters will detail the use of
each of these programs. The current report is intended as a users manual only; an upcoming
reference manual will discuss the theory behind the algorithms and physical models employed
and a software programmers manual will discuss the implementation for those interested in
modifying or improving the software package. The following chapters consist of users manuals
for the CFD codes DPLR2D/DPLR3D, the pre-processor FCONVERT, and the post-processor
POSTFLOW.

Required and Optional Software

There are only two required software packages that must be installed prior to DPLR:

(1) Fortran 90

DPLR is written entirely in Fortran 90, and as such requires a working f90 compiler on
the destination machine.

(2) Message Passing Interface (MPI)

dpcode V3.05.0

2

The code uses Message-Passing Interface (MPI) calls to facilitate interprocessor
communications, and therefore an MPI library must be installed. Many machines have a
native MPI package already installed, for the rest there is a free third party distribution
called MPICH, which can be installed onto almost any machine architecture. For 64-bit
architectures it may be preferred to use LamMPI, which is MPI-2 compatible.

In addition, there are several optional software packages that enhance the utility or performance
of the package, but are not required for successful installation:

(1) FXDR

The fxdr libraries are freely available from:

http://meteora.ucsd.edu/~pierce/fxdr_home_page.html.

These libraries provide a Fortran-based interface to the native XDR (eXternal Data
Reference) calls on all UNIX/LINUX machines. XDR enables the creation of platform
independent binary files, which greatly enhances the portability of generated datasets
(e.g. restart and grid files). The code can be compiled without the fxdr libraries, however
in that case all restart and grid files must be written in either ASCII or machine-specific
native binary format.

(2) TECIO.A

The Tecplot® I/O libraries are included with Amtec’s Tecplot® visualization software,
and may be available for free from the Amtec website:

http://www.tecplot.com/

There are two versions available, “tecio.a” for 32-bit architectures and
“tecio64.a” for 64-bit architectures. These libraries are used by POSTFLOW to
created Tecplot binary datafiles for post-processing output. The code can be compiled
without these libraries if they are not available.

(3) LIBGOTO (BLAS routines)

DPLR makes use of several BLAS routines for matrix-vector and matrix-matrix
manipulations. If such libraries are available on the target machine using them will lead
to small (~20-25%) performance improvements in the overall runtime of the code. BLAS
libraries are generally available from compiler makers as a part of their mathematical
libraries for a nominal fee. In addition, several freeware sources exist. In particular, for
Pentium or AMD architectures a freeware distribution called libgoto is available from:

dpcode V3.05.0

3

http://www.tacc.utexas.edu/resources/software/

Installation

DPLR is typically distributed as a gzipped tar file “dpcodeV3-05-0.tar.gz”. The first step
is of course to unzip and untar the file. This leads to a directory structure given by:

dpcodeV3-05-0/:

cfdinput/ cfdlib/ config* defs/
dplib/ dplr2d/ dplr3d/ fconvert/
include/ makefile post/ utilities/

The contents of the directories and files is as follows:

cfdinput/
This directory contains physical modeling datafiles used by DPLR during
execution. The contents of the directory will be discussed further below.

cfdlib/
This directory contains subroutines that are common to DPLR2D and DPLR3D.

config*
Configuration script used to setup the makefile for the specific machine
architecture. See below for use.

defs/
This directory contains makefile templates for the various supported machines.

dplib/
This directory contains subroutines that are common to the entire package.

dplr2d/
This directory contains subroutines unique to the DPLR2D code.

dplr3d/
This directory contains subroutines unique to the DPLR3D code.

fconvert/
This directory contains subroutines unique to the FCONVERT code.

include/
This directory contains modules, common blocks and other include files that are
incorporated into the various executables.

dpcode V3.05.0

4

makefile
Makefile for the package.

post/
This directory contains subroutines unique to the POSTFLOW code.

utilities/
This directory contains utility codes and scripts that are distributed with the
package.

A description of the contents of these directories is beyond the scope of the current DPLR Users
Guide. The specifics of the indiviual source files are discussed in detail in the DPLR
Programmers Manual.

Once the package has been untarred, the next step is to configure the makefile for the machine.
The script config is provided to do this. config has been written to detect several different
common machine architectures and generate a tailored makefile for them. When config is run it
will generate a file “makefile.comm” which contains all of the machine specific information.
Note that the script is relatively crude, and some tailoring of the resulting makefile may be
required to ensure correct pathnames, etc.

Assuming that all of the pathnames are correct in “makefile.comm” the next step is simply to
type “make”, which should generate all of the executable files in the package. Finally, typing
“make install” will install all of the executables and required input files in a bin directory, ready
for use.

dpcode V3.05.0

5

DPLR2D/DPLR3D

DPLR2D and DPLR3D are the main CFD codes provided in this distribution. In practice, the
two CFD codes share most of the same physics and numerics subroutines and libraries, and are
separated only by a difference in the “driver” routines. Separate executables are provided mainly
for performance; it is much faster to run a two-dimensional or axisymmetric problem using
DPLR2D than with DPLR3D. However, the two codes are for the most part interchangeable;
both share a common input deck format and about 90% of their subroutines. In this manual we
will refer to the code as “DPLR,” but will indicate those (few) areas where the behavior of
DPLR2D and DPLR3D are different.

Running DPLR

DPLR is run from the command line via MPI. The user first prepares the input deck, either by
starting from a similar case or by following the rules discussed in the following section. In order
to execute the run, type:

mpirun –np X (-machinefile machine.inp) $path/dplr2d < dplr.inp

at the command line, where “X” is the number of processors to use, “machine.inp” is the
name of the machine file (required by some MPI implementations), and “dplr.inp” is the
name of the input deck. When DPLR is executed, diagnostic output will be echoed to the screen
in order to provide feedback on the action(s) being performed. Any warning messages will also
be echoed to the screen. If a fatal error is detected during execution, a descriptive message will
be echoed to the screen and execution will terminate. DPLR always runs as a parallel code, even
if run on a single processor. See the users manual for FCONVERT for more information on how
and why to run your problem on multiple processors, and how to set up your input grid file.

If a machinefile is required by your computer architecture, it consists simply of an ASCII listing
of available machine (node) names, followed by a colon and the number of processes to start on
each node. In such cases it is the users responsibility to ensure that the nodes listed in the
machine file are available for use and free of other jobs prior to submission. An example
machinefile for a dual-processor workstation cluster might look like this:

node001:2
node002:2
node003:2

With this file jobs of up to six processors can be submitted. If a larger job is submitted using this
machinefile, more than two processes will be started on some or all of the nodes (they will be
“reused”) which will almost certainly lead to extremely slow performance or possibly even
hangs or crashes of the software,

The sample input deck presented in the following section replicates that for one of the sample
problems (“Neptune”) provided with this distribution. When DPLR3D is executed on this sample
problem, the output is:

dpcode V3.05.0

6

 dplr3d
 NASA Ames Version 3.05.0
 Maintained by Mike Wright; last modified: 04/02/06

Running on 8 processors
--> Allocating 1 nodes to block 1
--> Allocating 7 nodes to block 2
--> Maximum load imbalance = 13.73%
--> Input grid file hardwired for 8 processors

Summary of enabled CPP compiler directives:
--> AMBIPOLAR = 0
--> PARKTEXP = 0.50
--> NOHTC

****WARNING: CPP macro AMBIPOLAR = 0
 disables ambipolar diffusion

Neptune Mechanism: 5 species, 5 reactions (Liebowitz 1973 & 1976) Model
--> Species List: H2 H H+ He e
--> Reaction rates from: neptune5sp_leibowitz76.chem
--> Reaction Status: 1 1 1 1 1
--> Keq Fit Used : 0 0 0 0 0
--> Park 1990 fits for Keq (n=10^16)
--> Assume molecules created/destroyed at mixture Tve

Catalytic wall BC enabled
--> Constant accomadation coeff; gamma = 1.000
--> Fully catalytic to ion recombination

Radiative equilibrium BC enabled
--> Constant wall emissivity; epsilon = 0.85
--> Maximum wall temperature = 3000.00 K

Rotational Equilibrium - Fully Excited

Vibrational Equilibrium - SHO

Electronic Energy Neglected

dpcode V3.05.0

7

Laminar Navier-Stokes Simulation
--> Gupta-Style Collision Integrals & Yos Mixing Rule
--> Fickian Diffusion (Mass Fraction Gradients); Schmidt Number = 0.50

Ideal Gas Equation of State

3-Dimensional Flow

Implicit - Data Parallel Line Relaxation; kmax = 4
--> Using Global Timestepping

Estimate 187MB stack memory required per PE

Reading grid file: t250-Over-8PE.pgrx
--> Reading block 1: grid cell size 32X 16X 64
--> Reading block 2: grid cell size 48X 64X 64
--> Total number of grid cells = 229376
--> Computing grid dummy cells

Freestream Reynolds Number = 8.024E+04 (1/m)
Freestream Frozen Mach Number = 3.715E+01
Freestream Equil. Mach Number = 3.715E+01

nit = 1 rmsres = 1.0000000000000E+00 cfl = 1.0E-05
:
:

dpcode V3.05.0

8

Sample Input Deck

A sample input deck for DPLR is shown below. A brief description of each of the flags, along
with allowable settings, is provided in the following section. Detailed discussions of some of the
more complex options follow. Additional examples of DPLR input decks can be found in the
sample problems that are distributed with the software package; it is recommended that the user
run through each of the provided examples after reading this chapter and examine the output of
DPLR for each case.

INPUT DECK FOR DPLR2D/DPLR3D CODE

gname,fname,bname,rname,dname
'mygridname'
'myrestartname'
'mybcname'
'myradname'
'PATH/cfdinput/air5sp_park85.chem'

nblk igrid irest ibcf iradf nfree iinit
 1, 11, 11, 11, 0, 1, -1

ivis ikt ikv ivmod idmod itmod islip iblow
 1, 1, 11, 3, 3, 1, 0, 0

icatmd ireqmd twall epsr gamcat pback vwall
 0, 0, 5.0d2, 0.85d0, 1.0d0, 1.01d5, 0.0d0

ichem ikeq ivib irot ieex iel irad ipen
 1, 9, 1, 2, 0, 1, 0, 0

 itrmod itrans trloc trext itshk
 0, 0, 1.0d0, 0.1d0, 0

 istop nplot iplot iaxi ires
 700, 100, 1, 1, -2

 igdum kbl kdg istate iresv
 0, 0, 0, 0, 1

 xscale ils Le/Sc LeT/ScT prtl prtlT
 1.0d0, 2, 0.70d0, 0.50d0, 0.71d0, 0.90d0

 tfinal xxxx rvr resmin
 9.0d99, 1.0d+0, 1.3d0, 1.0d-20

 ispace dxmin slength nxtot
 0, 1.0d-2, 1.3d0, 1000

dpcode V3.05.0

9

==
 GRID ADJUSTMENT/ALIGNMENT/MORPHING
==

 igalign ngiter nalign
 0, 500, 1

 imedge imradial ngeom xxxxx
 1, 2, 2, 20

 fs_scale ds_mult gmargin
 0.9, 3.0, 0.0

 ds1 cellRe ds1mx ds2fr
 0.0d+0, 1.0, 1.0d-4, 0.3

==
 BLOCK #1
==

 ntx nty ntz iconr isim ifree initi
 30, 30, 1, -1, 1, 1, 1

 iflx iord omgi ilim idiss epsi
 2, 3, 2.0d0, 1, 1, 0.3

 jflx jord omgj jlim jdiss epsj
 2, 3, 2.0d0, 1, 0, 0.3

 kflx kord omgk klim kdiss epsk
 2, 3, 2.0d0, 1, 1, 0.3

iextst kmax ildir ibcu iblag ilt ibdir cflm
 -1, 4, 0, 1, -1, -1, 1, 1.0d20

 Boundary condition type [ibc]:
 imin imax jmin jmax kmin kmax
 14 3 26 1 19 19

==
 Freestream Specification #1
==

 irm density M/Re/V cx cy cz
 1, 6.8096d-4, 4.100d1, 1.0d0, 0.0d0, 0.0d0

 Tin Trin Tvin Tein
 2.650d2, 2.650d2, 2.650d2, 2.650d2

dpcode V3.05.0

10

 turbi tkref
 1.0d-3, 0.0d0

 cs (Species order: N2 O2 NO N O)
 0.767000d+0
 0.233000d+0
 0.000000d+0
 0.000000d+0
 0.000000d+0

==
 List of CFL numbers or timesteps for ramping
==

.001
.01
.1
.3
1.
3. 3
10. 4
25.
50.
100.
250.
500.
1000.
-1

Summary of Input Flags

Input flags will be described in the order in which they appear in the input deck. A full
description of some of the more complex options will be deferred until later sections or the
reference manual.

Some of the flags and/or options presented below are present for future expansion of the
capabilities of DPLR and are not currently used. These will be indicated as they appear.

I/O Filenames

These are external input files used by DPLR at runtime. These files can be specified using
relative or absolute pathnames. Depending on the format of the file a standard suffix will be
assumed – see Appendix A for details.

 gname

dpcode V3.05.0

11

Name of the input grid file. This file is required and must already exist when the
simulation is begun.

 fname

Name of the input restart file. This filename is required. The restart file will be
created if this is a new simulation, and must already exist if a restart is requested.

 bname

Name of the input boundary condition file, if any. Boundary condition files are
not required, but are used for several reasons as discussed in the section “Setting
Boundary Conditions” below.

 rname

Name of the input surface radiation, file if any. This file is optional, and is read
only if volumetric radiation data are input (irad = 1). If the file is not required,
use “none” as the filename.

 dname

Name of the input chemistry file. This file is required. See the section titled
“Input Physical Modeling Data” below for more information. Note that, unlike the
previously defined input files, it is important that the full path name (as opposed
to the relative pathname) to this file be given in the input deck.

Global Modeling Flags

These flags are for values that remain constant for all blocks of the simulation.

 nblk

Number of master grid blocks in the simulation (note that nblk will be less than
or equal to the number of processors on which the job is actually run).

 igrid

Specify the format of the input grid file (gname). This can be any of the formats
written by DPLR, summarized here:

dpcode V3.05.0

12

 1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

See Appendix A for a complete list and description of the various file formats
supported by the DPLR software package.

 irest

Specify the format of the restart file (fname). The choices are identical to those
for igrid:

 1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 ibcf

Specify the format of the input BC file (bname), if any. The choices are identical
to those for igrid, plus the option of no file:

 0 Do not read a BC file
 1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 iradf

Specify the format of the input radiation file (rname), if any. The choices are
identical to those for ibcf:

 0 Do not read a radiation file
 1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 nfree

Indicate the number of freestream specification records in the input file. See
below for a description of these records.

dpcode V3.05.0

13

 iinit

Specify how to initialize the simulation. Possible options for iinit are:

 0 Start all blocks by initializing to specified freestream values
 1 Restart from saved file
 2 Start with a stagnant interior at low pressure
 3 Start with artificial boundary layer in place
 10 Block-by-block initialization using iconr flag
 11 Restart from saved file, reset nit and etime

More information on solution initialization, along with specific recommendations
for specific problem types, is given below.

 ivis

Specify the equation set to solve. Possible choices are:

 0 Euler simulation (neglect Navier-Stokes terms)
 1 Laminar full Navier-Stokes simulation
 2 Turbulent full Navier-Stokes simulation
 11 Laminar Navier-Stokes simulation (thin-layer)
 12 Turbulent Navier-Stokes simulation (thin-layer)

DPLR is by default a full Navier-Stokes solver, but it can be run in Euler mode by
setting ivis = 0. In this setting the viscous subroutines are never called, and thus
run time per iteration is increased significantly. It is important to note that running
DPLR as an Euler code while specifying viscous boundary conditions is very
unstable. DPLR will print a warning message if this condition is detected.

Running DPLR in thin-layer mode (ivis = 11, 12) is provided mainly for
historical continuity with other codes, and is not recommended in general. DPLR
always computes the full Navier-Stokes fluxes if ivis > 0, but subsequently
zeroes out the cross terms if a thin-layer option is specified. Therefore, there are
no time or memory savings obtained by running in thin-layer mode.

For the turbulent cases (ivis = 2, 12) the turbulence model to be employed is
selected using the itmod flag as discussed below.

 ikt

Specify the model used to compute translational thermal conductivity. An
appropriate setting for ikt is required for all viscous simulations (ivis ≠ 0).
Possible choices are:

dpcode V3.05.0

14

 1 Use the model that is consistent with ivmod
 2 Use constant Prantdl number expression

See the definition of ivmod below for a brief description of the models
employed. A more thorough description will be given in the reference manual.
ikt = 1 is the preferred choice for all practical applications; ikt = 2 is provided
mainly as a way to compare results to other heritage codes.

 ikv

Specify the model used to compute vibrational thermal conductivity. An
appropriate setting for ikv is required for all viscous simulations (ivis ≠ 0)
with vibrational nonequilibrium (ivib = 1, 3, 4). Possible choices are:

 1 Standard expression with ev gradients
 2 Hard sphere approximation with ev gradients
 11 Standard expression with Tv gradients
 12 Hard sphere approximation with Tv gradients

A thorough description of the “standard” and “hard sphere” expressions will be
given in the reference manual. In general the hard sphere approximation is
provided only for comparison to legacy codes and should not be used. The choice
between ev and Tv gradients is somewhat arbitrary, and scales the resulting
vibrational thermal conductivity (κv) by the vibrational specific heat (

!

C
vvib

):

!

qv ="
#Tv
#$

%"
#Tv
#ev

#ev
#$

= & "
#ev
#$

!

" #
v

=# /C
vvib

For most simulations there is little difference between ikv = 1 and ikv = 11.
However, for cases where the flow is nearly completely dissociated, using energy
gradients becomes slightly unstable since there is little energy in this mode. For
this reason, ikv = 11 is the preferred choice for all practical applications.

 ivmod

Specify the baseline model used to compute mixture viscosity and thermal
conductivity. An appropriate setting for ivmod is required for all viscous
simulations (ivis ≠ 0). Note that the thermal conductivity model can be
overridden with the ikt flag discussed above. Possible choices of ivmod are:

 1 Blottner/Wilke model with an Eucken relation
 2 Sutherlands Law and constant Prandtl number

dpcode V3.05.0

15

 3 Yos approximate mixing rules
 4 RESERVED
 11 Blottner/Armaly-Sutton with an Eucken relation
 12 Keyes’ Equation and constant Prandtl number

Again, a thorough description of the different models will be given in the
reference manual. However, a few quick notes are discussed here. The
Blottner/Wilke model (ivmod = 1) is widely used in the reacting flow
community, although it has been shown to be inaccurate at elevated temperatures.
It is provided primarily for comparison with legacy codes. The Armaly-Sutton
model (ivmod = 11) is a clear improvement over Blottner/Wilke, but requires
composition-dependent tailoring of the free parameters for maximum accuracy.
Sutherland’s Law (ivmod = 2) is available only for perfect gas flows, and is a
reasonable estimate at low to moderate temperatures. Keyes’ Equation (ivmod =
12) was developed for low temperature air flows and should only be used for
perfect gases where the temperature is very low (<100 K). Finally, the Yos
mixing rule (ivmod = 3) has been shown to be a reasonable and general
approximation to the true Chapman-Enskog fluxes, and as such is the preferred
model for all reacting gas simulations.

 idmod

Specify the model used to compute species diffusion coefficients. An appropriate
setting for ivmod is required for all multi-species viscous simulations (ivis ≠
0). Possible choices of idmod are:

 1 Constant Lewis/Schmidt number
 2 Bifurcation model
 3 Self Consistent Effective Binary Diffusion
 5 RESERVED
 11 Constant Lewis/Schmidt number, ignore ambipolar
 12 Bifurcation model, fits include ambipolar
 13 Self Consistent Effective Binary Diffusion, ignore ambipolar

Again, a thorough description of the different models will be given in the
reference manual. However, a few quick notes are discussed here. The constant
Lewis/Schmidt number model (idmod = 1) is the simplest choice, and assumes
that all species have the same diffusion coefficient. The value of the Lewis or
Schmidt number is given by the settings of the ilt and Le/Sc flags below. This
model is included because it is widely used and simple to implement, but it is
usually inaccurate. However, fair results can be obtained for a given problem
class by choosing a Schmidt number to match benchmark results at similar
conditions from a more accurate model. The Bifurcation model (idmod = 2, 12)
was developed to model boundary layer diffusion of carbon-based ablators, and
was employed by Olynick et al. in the design of the Stardust probe. The model

dpcode V3.05.0

16

can produce accurate results, but requires as input least-squares fit coefficients for
each species which are (ideally) obtained by more accurate simulations. These
coefficients are imported to DPLR via the chemical model (*.chem) file
employed.

The preferred model for all multi-species calculations is the Self-Consistent
Effective Binary Diffusion (SCEBD) model of Ramshaw and Chang (idmod = 3,
13), which has been shown to give results in good agreement with exact solutions
of the Stefan-Maxwell equations. This model requires as input collision integral
data for each binary interaction in the mixture. These data are imported to DPLR
via the “gupta.tran” physical model file in the cfdinput/ directory.
However, one problem with this model is that it tends to be somewhat unstable
for separated flows, particularly while the recirculation region is being formed.
Therefore, for separated flows it is recommended to start the solution with idmod
= 1 and an appropriate Schmidt number, and then switch to idmod = 3 once the
flow structures have stabilized.

The values idmod = 11-13 instruct DPLR to negelect ambipolar diffusion for
ionized flows, and are provided mainly for comparison to other heritage codes. If
the flowfield is non-ionized these are equivalent to their single-digit equivalents.

 itmod

Specify the turbulence model to be employed. An appropriate setting for itmod
is required for all turbulent simulations (ivis = 2, 12). Possible choices are:

 0 Laminar Flow
 1 Baldwin-Lomax Model
 1000 Spalart-Allmaras Model (no compressibility corr.)
 1001 Spalart-Allmaras Model (Catris&Aupoix comp.)
 1002 Spalart-Allmaras Model (Secundov comp.)
 2001 Menter SST Model (no compressibility correction)
 2002 Menter SST Model (compressibility correction #1)
 2003 Menter SST Model (compressibility correction #2)

Again, a thorough description of the different models will be given in the
reference manual. However, a few quick notes are discussed here. The Baldwin-
Lomax model (itmod = 1) is a zero-equation (algebraic) model commonly
employed for many simulations at all Mach numbers and flow regimes.
Comparison to ground test and flight data has shown that the Baldwin-Lomax
model provides reasonable results for attached flows with a favorable pressure
gradient on both blunt and slender bodies. However, agreement with data on
separated flows and flows with adverse pressure gradients is much worse. For
these flows the Menter SST two-equation model with compressibility corrections
(itmod = 2003) is recommended.

dpcode V3.05.0

17

Finally, all turbulent flow simulations require models for turbulent transport
properties. The turbulent viscosity is computed via either an algebraic expression
(itmod = 1) or from the expression for turbulent dissipation. Thermal
conductivities are computed via a constant turbulent Prandtl number (PrT,
defined below), while turbulent diffusion is computed via a constant turbulent
Schmidt number (ScT, defined below).

 islip

Specify the model to be used for slip-wall boundary conditions. Possible choices
are:

 0 Disable wall slip
 1 Maxwellian slip model

Again, a thorough description of the different models will be given in the
reference manual. Slip walls are only valid when ivis ≠ 0, and are generally
used to relax the standard viscous no-slip wall boundary condition in order to
simulate near non-continuum flows. Slip walls are not generally employed for
simulations in the hypersonic or supersonic continuum, and so the usual setting
for this flag is islip = 0. DPLR has currently implemented velocity and
temperature slip models, but not species density (mole fraction) slip conditions. It
should be noted that the slip wall model in DPLR has not been fully validated at
this time, and should be used with caution.

 iblow

Specify the model to be used for blowing-wall boundary conditions. Possible
choices are:

 0 Disable wall blowing
 1 Specified wall blowing velocity
 2 Specified unit mass flow rate

DPLR provides several ways to implement mass blowing through a solid wall. At
this point these models only work for viscous walls (ivis ≠ 0). The iblow flag
is used to specify relatively simple models as shown above, whereby the user can
specify either a constant velocity or unit mass flow rate through every cell on the
surface. The velocity or mass flow rate is specified with the vwall flag. In either
case the resulting velocity is assumed to be normal to the surface, and the
composition and temperature of the blown gas are taken from surface boundary
conditions. Values of vwall > 0 result in a blowing wall, while vwall < 0
results in a sucking wall. This option is not often used in practice, and thus the

dpcode V3.05.0

18

usual setting is iblow = 0. More complex models, including ablation, pyrolysis
or transpiration gas blowing, are also implemented in DPLR using the material
response boundary conditions as discussed below.

 icatmd

Specify the model to be used for wall catalysis. Possible choices are:

 0 Disable wall catalysis
 1 Constant γ homogeneous model
 2 Constant γ, fully catalytic to ions
 3-98 Material specific surface kinetics
 99 Input material map
 100 Supercatalytic wall
 101-198 Supercatalytic with specified freestream
 200 Mitcheltree CO2 model
 201 Enhanced Mitcheltree CO2 model
 300 Generalized CO2 catalysis (Bose/Wright)

Catalysis here refers to the wall surface facilitating chemical reactions that can
deposit energy on the surface. DPLR offers many different models for surface
catalytic reactions, which are summarized here. A more detailed description of the
underlying physical models is given in the reference manual. If icatmd = 0 is
specified the wall is assumed to be non-catalytic, which means that the gradient of
all species mole fractions at the wall is zero.

The simplest catalytic model is the so-called supercatalytic wall (icatmd = 100),
in which it is assumed that the chemical composition at the wall is identical to that
in the freestream. This model is often employed for design studies because it
provides maximum chemical enthalpy deposition on the surface and thus is a
conservative estimate. However, the supercatalytic wall model assumes that all
surface processes are infinitely fast and are not rate or diffusion limited, which is
not typically a realistic assumption. DPLR also offers an “enhanced”
supercatalytic wall BC (icatmd = 101-198) in which the wall composition is
specified by a given freestream input block (see below for more information on
specifying freestream conditions). This option is most often used for simulations
of high enthalpy ground test facilities, where the actual freestream composition is
frequently dissociated, while a true maximum enthalpy recovery boundary
condition requires that the gas composition at the wall be fully recombined.

The other models offered include rate limiting effects. The simplest model is to
assume that atoms that reach the wall recombine to form molecules with some
constant efficiency, known as the accommodation coefficient (γ). This model is
enabled by setting icatmd = 1 and fixing a value for γ with the gamcat flag. In
an ionized flow there will also be recombination of the ions as the reach the

dpcode V3.05.0

19

surface. This rate is also governed by gamcat if icatmd = 1. However, for an
electrically neutral surface it is generally assumed that the wall is fully catalytic to
ion recombination, regardless of the recombination efficiency of neutrals. This
model is accessed by setting icatmd = 2. It is important to note that only
homogeneous surface reactions are supported in this model, i.e. for air the two
possible neutral surface reactions are

 N + N → N2
 O + O → O2

DPLR also supports material specific catalysis models, in which the catalytic
efficiency is temperature and reaction dependent. These models are accessed by
setting icatmd = 3-98. The rates for different materials are generally
experimentally obtained, and are given in “catalysis.surf” in the
cfdinput/ directory.

Setting icatmd = 99 enables a surface catalytic map, which is read into DPLR
via the input BC file, specified using the bname flag above. Use of this map
allows the user to specify pointwise material properties and is discussed below.

At the current time DPLR has limited support for generalized (heterogeneous)
catalysis models. The Mitcheltree model (icatmd = 200), developed for CO2
atmospheres, models the recombination pathway CO + O → CO2 via a pair of
diffusion limited steps. An enhanced version of the Mitcheltree model (icatmd
= 201), add the additional pathway C + O2 → CO2, which is potentially important
for higher flow enthalpies. These models have been employed for Mars Pathfinder
analysis, but there is no experimental evidence to support the existence of the
required surface reactions. Finally, a generalized parametric CO2 surface reaction
model is available (icatmd = 300) which models the competing processes

 CO + O → CO2

 O + O → O2

via a pair of competing reactions with a user-specified perference factor. This
model is generally employed in sensitivity analysis; it should not in general be
used for design work.

 ireqmd

Specify the model to be used for surface radiative equilibrium. Possible choices
are:

 0 Disable radiative equilibrium
 1 Constant emissivity (ε) model
 3-98 Material specific ε

dpcode V3.05.0

20

 99 Input material map
 101-198 Material specific ε with a maximum temperature wall

A radiative equilibrium wall is a common design model that assumes that all
energy incident to the surface is reradiated to space according to the expression:

!

qw = "#Tw
4

where ε is the surface emissivity (which may be a function of temperature) and σ
is the Stefan-Boltzmann constant. In this model the wall temperature is a derived
property, based on the incident heat flux (as opposed to an isothermal wall where
the temperature is a prescribed quantity). Although this model neglects other
terms in the surface energy balance (such as conduction into the interior), it
provides a quick and dirty first estimate of the flight heating rate, especially for
non-ablating materials, where the thermal conductivity is kept intentionally low.

Possible choices include setting a constant value for the surface emissivity given
by epsr (ireqmd = 1). The user can also specify material-specific properties
(ireqmd = 3-98) or an input material map (ireqmd = 99), options discussed in
more detail in the section on icatmd above. Finally, it is possible to place a
maximum wall temperature limit criterion in addition to the models discussed
above (icatmd = 101-198). This is included primarily to better model physical
material temperature limits during initial design analysis. The maximum
temperature is specified using the twall flag, and the code will automatically
switch between an isothermal and radiative equilibrium wall on a pointwise basis
if this option is employed.

 twall

Specify the wall temperature to be used for isothermal (or temperature-capped
radiative equilibrium) wall simulations.

 epsr

Specify the constant value of emissivity (ε) to be used for radiative equilibrium
wall simulations (ireqmd = 1).

 gamcat

Specify the constant value of catalytic efficiency (γ) to be used for catalytic wall
simulations (icatmd = 1, 2).

dpcode V3.05.0

21

 pback

Specify the back pressure. Currently not used in DPLR.

 vwall

Specify the wall velocity. This flag allows the user to impose a constant blowing
(vwall > 0) or sucking (vwall < 0) when used with the iblow flag. In
addition, this flag can be used to specify a fixed wall velocity in a viscous flow
simulation, but this option should be used with caution.

 ichem

Specify the model employed for chemical reactions in the gas phase. Possible
choices are:

 0 Frozen chemistry
 1 Finite-rate chemistry

A frozen chemistry model means that no chemical reactions occur in the
flowfield, while the finite-rate model uses Arrhenius style reaction kinetics to
model the chemistry. Chemical reaction rates are taken from the “*.chem” file
specified with the dname flag discussed above. DPLR does not support
equilibrium chemistry at this time.

 ikeq

Specify the model employed for computing equilibrium constants. This is
required when ichem = 1. Possible choices are:

 -1 No reverse reactions
 1 Park 1985 fits
 2 Mitcheltree 1994 fits
 3 Park 1990 fits (n = 1016/cm3)
 4 Park 1990 fits (n = 1019/cm3)
 9 Computed from NASA LeRC (1994) thermodynamic data

By default in DPLR, forward reaction rates are computed via Arrhenius
expressions, while backward rates are computed from an equilibrium constant:

!

kb = k f /Keq

where kb is the backward rate, kf is the forward rate, and Keq is the equilibrium
constant for the reaction. Several curve fit models are offered for computing the

dpcode V3.05.0

22

equilibrium constants, including those from Park and one from Mitcheltree (ikeq
= 1-4). Curve fit coefficients for these models are read from the file “park.keq”
file in the cfdinput/ directory. These models are provided mainly for heritage
reasons, and should not in general be used, since they tend to behave poorly if the
temperature in the flowfield extends outside of the fit range, leading to
instabilities for some simulations. The preferred method of computing equilibrium
constants is to use the minimized Gibb’s free energy method (ikeq = 9), where
species enthalpy and entropy are computed using curve fit expressions given by
Gordon and McBride and the final equilibrium constant is then determined via the
van Hoff’t equation.

Finally, it is possible to “turn off” reverse reactions completely by setting ikeq =
-1. This is provided as a debugging tool and should not be used for any real
simulations.

 ivib

Specify the model employed for computing the vibrational energy component of
the gas. Possible values of ivib are:

 0 Neglect vibrational energy
 1 Vibrational nonequilibrium, single Tv
 2 Vibrational equilibrium using statistical mechanics
 3 Complete thermal equilibrium using NASA LeRC curve fits
 4 Two temperature model using LeRC curve fits (Tr = Tel = T)
 5 RESERVED
 11 RESERVED

The details of the various models are discussed further in the reference manual.
Briefly, the user can choose to either neglect vibrational energy (ivib = 0),
model in equilibrium with the translational component of the gas (ivib = 2, 3),
or model it in thermal nonequilibrium (ivib = 1, 4). Vibrational nonequilibrium
is not very important for such flows as low altitude hypersonic flight or some
Shuttle reentry trajectories. For these cases it is frequently sufficient to model the
flow in vibrational equilibrium. When this is the case, the preferred option is
ivib = 3, which uses the LeRC (1994) thermodynamic curve fit data to compute
the total energy of a molecule as a function of temperature. This method
implicitly includes non-ideal effects such as electronic excitation and anharmonic
oscillators to the extent that these data are part of the LeRC database.

On the other hand, for most planetary and high velocity Earth entry flows,
vibrational non-equilibrium has a first-order impact on both convective and
radiative heat transfer and must be considered. For these flows ivib = 1 usually
employed. In this model it is assumed that the vibrational mode of the gas is out
of equilibrium with the translational modes, but all species vibrational modes are

dpcode V3.05.0

23

governed by a single characteristic temperature. This is certainly an
approximation of the true physics of the flow, but given that little quantitative
data is available for the vibration-vibration coupling terms that would be required
to increase the fidelity of the current model this is considered to be good enough
for engineering purposes. The user can also model nonequilibrium with ivib =
4, which is essentially a two-temperature adaption of the complete thermal
equilibrium model developed by Gnoffo; however at this time this method will
not work for ionized flows.

Finally, it is important to note that if ivib = 3 (complete thermal equilibrium) is
specified the input values of irot and ieex, and iel are ignored.

 irot

Specify the model employed for computing the rotational energy component of
the gas. Possible values of irot are:

 1 Rotational nonequilibrium, single Tr
 2 Rotational equilibrium using statistical mechanics
 3 Complete thermal equilibrium using NASA LeRC curve fits
 4 Two temperature model using LeRC curve fits (Tr = Tel = T)
 5 RESERVED
 11 RESERVED

The details of the various models are discussed further in the reference manual.
Unlike vibration, the rotational mode of the gas is assumed to be fully excited,
and thus cannot be neglected for polyatomic species. The basic choice before the
user is to model the rotational mode in equilibrium with the translational mode
(irot = 2-4), or in nonequilibrium governed by its own unique temperature
(irot = 1). Note that the complete thermal equilibrium model (irot = 3) and
two temperature model (irot = 4) are identical to those described for the ivib
flag above. In practice it is rarely necessary to solve for a nonequilibrium
rotational energy, since the nonequilibrium region is so small. This feature is
provided mainly for detailed radiation studies of high altitude flows.

 ieex

Specify the model employed for computing the electronic energy component of
the gas. Possible values of ieex are:

 0 Neglect electronic energy
 1 Statistical mechanics (Te = T)
 2 RESERVED

dpcode V3.05.0

24

 3 Complete thermal equilibrium using NASA LeRC curve fits
 4 Two temperature model using LeRC curve fits (Tr = Tel = T)
 5 RESERVED

The details of the various models are discussed further in the reference manual.
For ieex = 1 the contribution of the electronic energy to the total is computed
using statistical mechanics based on characteristic temperatures and degeneracies
in the “chemprops.spec” file from the cfdinput/ directory, and is
assumed to be equilibrium with the translational mode. The other possible models
are discussed in the description of ivib above.

 iel

Specify the model employed for computing the free electron energy component of
the gas. This flag is only used when an ionized flow is modeled. Possible values
of iel are:

 1 Coupled electron and translational modes (Te = T)
 2 RESERVED
 3 Complete thermal equilibrium using NASA LeRC curve fits
 4 Two temperature model using LeRC curve fits (Tr = Tel = T)
 5 RESERVED
 11 RESERVED

The details of the various models are discussed further in the reference manual.
iel = 3 and 4 are identical to that discussed for ivib above. iel = 1 assumes
that the energy of the free electron gas is governed by the translational
temperature. It is not currently possible to model the free electrons as coupled to
the nonequilibrium vibrational temperature of the gas.

 irad

Specify the model employed for shock layer radiation modeling. Possible values
of irad are:

 0 No radiation model
 1 Read pointwise

!

" #Q
R
 from a file

 2 Optically thin emission (CN Violet)
 3 Optically thin emission (CN Red)
 4 Optically thin emission (CN V+R)
 102-104 Same as 2-4 with input surface heating

DPLR does not compute shock layer radiation directly, but several hooks are
provided for coupling, either loosely to external radiation transport codes or

dpcode V3.05.0

25

tightly for optically thin emission. Typically, for weakly radiating flowfields,
shock layer radiation is either neglected or computed in an uncoupled manner. For
these cases, set irad = 0.

If the radiation field is known to be optically thin, DPLR supports tight coupling
by computing the

!

" #Q
R
 source term at each volume cell using curve fits

generated by comparison to more exact computations. Currently DPLR supports
this option for CN radiation only (irad = 2-4). In this case DPLR reads the curve
fit coefficients from the file “emission.rad” from the cfdinput/ directory.
In this option it is assumed that energy converted to radiation is instantly lost from
the control volume. A slight improvement on this model can be achieved by
including the surface radiative heating effects in the radiative equilibrium surface
energy balance. This is accomplished by using (irad = 102-104) and reading the
pointwise surface radiative heating from the radiation file (rname). See
Appendix XX for a description of the format of this file, and Ref. Wright2005 for
a complete description of the effects of optically thin radiation coupling. Note that
optically thin emission for other species can easily be added to the code if desired.

Finally, for most radiating shock layers the gas is absorbing as well as emitting.
For this case the radiation transport becomes non-local and is beyond the current
capabilities of DPLR to compute. However, it is possible to use a loosely coupled
approach, iterating between DPLR and a radiation transport code such as
NEQAIR, to determine the resulting coupled flowfield. This is done by running
an initial solution neglecting radiation effects (irad = 0), and then solving for
the

!

" #Q
R
 source term at each volume cell using a radiation transport code. The

resulting source terms are then read into DPLR via the radiation file (rname),
and the solution is restarted using irad = 1. The process is then repeated until a
fully converged solution is obtained. This methodology was discussed in detail by
Olynick et al. See Appendix XX for a description of the format of the required
radiation file.

 ipen

Flag is provided for future expansion and is not used by the code at this time.

 itrmod

Specify the model employed for turbulence transition modeling. This flag is used
whenever a turbulent flowfield (ivis = 2, 12) is specified. Possible values of
itrmod are:

 0 Neglect transition, flow is fully turbulent
 1 TANH transition function
 2 Dhawan and Narashima model

dpcode V3.05.0

26

 3 Sigmoid function
 100 Input transition map

DPLR does currently have the capability to predict transition, but several models
are in place to force transition at a user-specified location. If a fully turbulent
flowfield is desired (as is usually the case), specify itrmod = 0. Three different
models are provided to offer a smooth transition from laminar to turbulent flow at
a user specified location (itrmod = 1-3). These are described in more detail in
the reference manual, and make use of the flags itrans, trloc, and trext
discussed below to define the location and extent of the transition region.

A more flexible approach is to use an input transition map (itrmod = 100). In this
approach the user constructs a transition map consisting of a turbulence intensity
value ranging from 0 (fully laminar), to 1 (fully turbulent) at each surface point.
These data are read into DPLR via the BC file (bname). See Appendix XX for a
description of the file format. This method allows the user to effectively simulate
local turbulent regions in a laminar flow. However it is important to note again
that all of the models available in DPLR force, but do not predict, turbulent
transition.

 itrans

Specify the ordinate of the transition onset location. This flag is used whenever a
turbulent flowfield (ivis = 2, 12) with an input transition model (itrmod = 1-
3) is specified. Possible values of itrans are:

 ±1 Transition at specified constant x value
 ±2 Transition at specified constant y value
 ±3 Transition at specified constant z value

Setting itrans to a positive value implies transition proceeds with increasing
ordinate, while setting it to a negative value implies that transition proceeds with
decreasing ordinate.

 trloc

Specify the transition onset location. This flag is used whenever a turbulent
flowfield (ivis = 2, 12) with an input transition model (itrmod = 1-3) is
specified. trloc is a real dimensional number tied to the value of itrans
above. As an example, if itrans = 1 and trloc = 2.5, the code will initiate
transition at a value of x = 2.5 m, with turbulent flow for larger values of x and
laminar flow for smaller values.

dpcode V3.05.0

27

 trext

Specify the extent of transition. This flag is used whenever a turbulent flowfield
(ivis = 2, 12) with an input tanh transition model (itrmod = 1) is specified.
trext is a real dimensional number equal to the width of the tanh function from
.01-.99. The other transition models do not permit user modification of the
transition length, so the trext flag is not used in these cases.

 itshk

Flag is provided for future expansion and is not used by the code at this time.

 istop

Specify the number of iterations to run before stopping. Note that istop is a
relative, rather than absolute, value. For example, if a simulation in DPLR is
restarted after 500 iterations are already complete and istop = 100, the code will
run 100 additional iterations, reaching completion after 600 total iterations.

 nplot

Specify the frequency of restart file writes. DPLR will save a restart file
periodically every nplot iterations during the solution (as long as the flag
iplot > 0). In general nplot should be set to a value large enough that DPLR
does not spend a large percentage of the runtime writing restart files, but small
enough that a lot of work is not lost in the case the job quits for some reason.

 iplot

This flag is used to control the redundancy of restart file writes. Possible options
for iplot are:

 0 Do not write a restart file
 1 Write a single restart file
 n Save n – 1 prior restarts
 -99 Force restart file write

Obviously iplot = 0 should not be used except for debugging purposes, since
the results of the simulation will not be saved in this case. Setting iplot to a
positive integer larger than 1 causes the code to save n – 1 previous restart files in
addition to the current one. This can be useful in case the code blows up, or to
perform convergence testing. For this case DPLR will append the iteration
number of the restart file to the filename in order to distinguish them. For

dpcode V3.05.0

28

example, if the restart filename (fname) is specified as “sample.pslx”,
iplot = 3, and nplot = 200, then after 1000 iterations the following files will
exist:

 sample.pslx
 sample.pslx-800
 sample.pslx-600

Where the most recent restart file has no iteration suffix, and older files have the
iteration number at which they were created. Older restart files are deleted by
DPLR interactively.

Finally, the user can force a restart file write even if the file contains NaN’s. This
is typically used only rarely only for debugging purposes on parallel machine
architectures for which NaN’s are not fatal errors.

 iaxi

This flag is used enable axisymmetry in the simulation. This flag is applicable
only for DPLR2D runs. Possible values of iaxi are:

 0 Non-axisymmetric (2D)
 1 Axisymmetric about x-axis
 2 Axisymmetric about y-axis

DPLR2D simulates axisymmetric flows by solving the Navier-Stokes equations in
cylindrical rather than Cartesian coordinates. This allows for an axisymmetric
simulation in about the same total solution time as a 2D result. The rotation axis
of the problem is always assumed to be either the x- or y-axis, as shown above.
Note that DPLR2D simulations are always in the xy-plane, so rotation about the z-
axis is not permitted.

 ires

This flag is used the type of residual and convergence data that are tracked and
output to the screen and to the convergence file. Possible values of ires are:

 0 Do not output a convergence file
 1 Output nit, global residual, and Δt
 2 Output nit, global residual, and CFL number
 3 Output nit, global residual, and CPU time
 4 Output nit, global residual, and flow time
 11 Output nit, block residual, and Δt
 12 Output nit, block residual, and CFL number

dpcode V3.05.0

29

 13 Output nit, block residual, and CPU time
 14 Output nit, block residual, and flow time
 22 Output nit, global residual, and min/max CFL
 32 Output nit, block residual, and min/max CFL

When DPLR is run, convergence information is always output to both standard
out and a convergence file (*.con). The ires flag gives the user control over
what data to write. In each case the first output is the iteration number (nit). This
is followed by one or more L2norm residuals. The variable(s) for which the
L2Norm is computed is controlled by the iresv flag discussed below.
Depending on the setting of ires, the user can examine either the global residual
(summed over all computational blocks in the simulation), or the block-by-block
residuals. Block-by-block output is useful to determine which blocks in the
simulation are converging slowly (or not converging at all). Note that block
output is based on the master blocks, not the parallel decomposed blocks. Also
note that for simulations with many master blocks the output data can get
voluminous. For this reason block residuals are only written to the convergence
file; the data reported to standard out are always global residuals.

The final output variable is either the computed Δt for that iteration, the current
CFL number, the elapsed CPU time, or the elapsed flow time. Note that elapsed
flow time is only a useful output for time accurate simulations. DPLR always uses
a global (rather than local) time step, but does support block-by-block CFL
limiting using the cflm flag discussed below; therefore options are provided to
output both the minimum and maximum CFL number employed.

Finally, if the ires flag is entered as a negative number the output residual(s) are
normalized by the computed residual in the first iteration. This is generally the
preferred output format, but a word of caution is required: some problem
simulations can have zero residual of certain variables in the first iteration (i.e.
viscous flow over a flat plate when tracking density residual). In this case the
residual will be normalized by a very small number, leading to seemingly large
normalized residuals at later iterations.

 igdum

This flag controls the computation of grid dummy cell coordinates. Possible
values of igdum are:

 0 Only compute if necessary
 1 Always recompute
 -99 Only compute if necessary, output debugging files
 99 Recompute and output debugging files

dpcode V3.05.0

30

When a grid file is created by FCONVERT, dummy cell values are not computed,
because FCONVERT does not have information about the correct boundary
conditions to enforce at each grid face. When such a grid is read into DPLR for
the first time the code will automatically generate the correct dummy cell
coordinates for each block based on the supplied BC’s, and send the correct data
to all processors in the simulation. DPLR will then overwrite the stored grid file
to include the dummy cell information. The preferred setting for this flag is
igdum = 0, since there is in general no need to recompute dummy cells once they
have been formed. However, it is essential to recompute the dummy cells (igdum
= 1) if the block boundary conditions are changed. One common need for this is if
a setup error is detected in the boundary conditions.

The other options (igdum = ±99) are provided mainly for developers to check for
errors in the dummy cell computations. When these options are selected the code
will generate a series of “fort.xx” files that consist of plot3d grid files
including dummy cells for each parallel block in the simulation, where xx is equal
to 50 + the processor number. For large simulations a lot of files will be
generated. Again, these options are meant for code developers and should not in
general be employed by users.

 kbl

This is a rarely used flag that allows the user to zero out the body-normal added
dissipation term in the boundary layer. If kbl is a positive integer the body-
normal eigenvalue will be zeroed out for the kbl cells nearest to each solid wall
in the simulation, and smoothly increased to the specified value. The flag is rarely
used because it is seldom necessary or correct to have a non-zero value of the
added dissipation term in the body-normal direction. See the reference manual for
more details.

 kdg

This flag is not meant for regular users and should be left equal to zero.

 istate

This flag is for future expansion of the package and is not used at this time.

 iresv

This flag controls the residual variable(s) that are tracked by DPLR. Possible
choices of iresv are:

dpcode V3.05.0

31

 1 Total density
 2 Velocity
 3 Energy
 4 Turbulence variables
 -n Conserved variable #n

The most common output is to sum the L2Norm of all species densities (iresv =
1), however DPLR also permits a sum over velocity components (iresv = 2),
energy equations (iresv = 3), or turbulence variables for the Spalart-Allmaras or
Menter SST model (iresv = 4). Finally it is possible to track the residual of a
single equation by using a negative integer for iresv. For example, for a 5-
species 2D simulation the residual in the u momentum component can be tracked
with iresv = -6. Since DPLR is a fully coupled code (with the exception of
some turbulence models), convergence of one variable is typically dependent on
convergence of the others, which somewhat limits the utility of single variable
residual. However it can be useful for unstable simulations, since the offending
equation will generally “blow up” before the others.

 xscale

This flag is used to scale the input grid at runtime. xscale should be used with
great caution, since it is possible to end up multiply scaling the grid file if the user
is not careful. The recommended setting is 1.0 (no scaling). DPLR will print a
warning message if the value is not set to unity.

 ils

Determines whether the input constants governing laminar (Le/Sc) and turbulent
(LeT/ScT) diffusion coefficients are to be interpreted as Lewis or Schmidt
numbers. Possible values for ils are:

 1 Lewis Number
 2 Schmidt Number

 Le/Sc

Value of the laminar Lewis or Schmidt number to be employed in the simulation.
The Lewis (Le) and Schmidt (Sc) numbers are defined as

!

Le = "D / #Cp();

!

Sc = µ / "D()

This parameter is relevant for viscous simulations (ivis ≠ 0) with constant
Schmidt number diffusion (idmod = 1, 11). Choosing a constant Schmidt number

dpcode V3.05.0

32

is typically preferred. The appropriate value varies depending on the target
destination and entry velocity, but is generally in the range of 0.4-0.7. Note that as
stated above the preferred option is to model multispecies diffusion coefficients
(idmod = 3), in which case this flag is not used during the simulation.

 LeT/ScT

Value of the turbulent Lewis or Schmidt number to be employed in the
simulation. Definitions are the same as for the laminar quantities if the laminar
viscosity and thermal conductivity are replaced by their turbulent counterparts.
This parameter is relevant for turbulent viscous simulations (ivis = 2, 12)
regardless of the setting of idmod; there is no available model for variable
Schmidt turbulent number available at this time. The computed catalytic heating
in a turbulent reacting flow is strongly sensitive to the chosen value of the
turbulent Schmidt number (decreasing ScT leads to increased heating);
unfortunately there is no literature discussing the appropriate value to use for wall
bounded flows. Values in the range of 0.5-1.0 are commonly employed; a value of
0.7 has been baselined for the Mars Science Laboratory.

 prtl

Value of the laminar Prandtl number to be employed in the simulation. The
Prandtl number (Pr) is defined as

!

Pr = "µ / #Cp()

This parameter is relevant for viscous simulations (ivis ≠ 0) with constant
Prandtl number thermal conductivity model (ivmod = 2, 12 or ikt = 2). In
general these models should only be selected for perfect gas (non reacting) low
temperature flows; therefore the value of prtl is usually not relevant. For low
temperature air flows a value of 0.72 is appropriate.

 prtlT

Value of the turbulent Prandtl number to be employed in the simulation. The
turbulent Prandtl number (PrT) is defined as

!

PrT = "µT / #TCp()

This parameter is relevant for all turbulent viscous simulations (ivis = 2, 12)
regardless of the turbulence or laminar conductivity model. A value of prtlT =
0.9 is usually selected (albeit without much justification).

dpcode V3.05.0

33

 tfinal

For time accurate simulations this is the final flow time desired, in seconds. This
flag is not used for steady-state problems.

 xxxx

Not used in DPLR at this time.

 rvr

Viscous overrelaxation parameter. In general this should not be changed from its
default value of 1.3.

 resmin

The solution will be time-marched until the L2Norm residual reaches this level.
For normalized residuals a value of 1×10-8 or lower will usually ensure a fully
converged solution. If you prefer that the solution always runs to a specified
number of iterations (istop), set resmin equal to some very small value (i.e.
1×10-20).

 ispace

This and the following three flags are only used to perform 1D space marching
simulations (such as simulations of shock tube flows). Possible values of ispace
are:

 0 Disable space marching
 1 Enable space marching

The space marching routine is seldom used in practice, but it provides an
extremely fast and efficient tool to perform simulations of 1D flows (such as
shock tubes) with complex models. The marching algorithm employs an explicit
4th-order Runge Kutta integrator. If this option is selected many of the other
options of the code are not used.

 dxmin

Set the minimum x-spacing for the space marching routine. This option is only
used when ispace = 1.

dpcode V3.05.0

34

 slength

Set the total marching distance for the space marching routine. This option is only
used when ispace = 1.

 nxtot

Set the total number of cells for the space marching routine. This option is only
used when ispace = 1.

Grid Adaption Flags

The following flags are used to set up and initialize the optional automatic grid alignment feature
in DPLR. See below for more information about grid alignment.

 igalign

This flag is used to enable and set the type of grid adaption requested. Possible
choices are:

 0 Do not perform grid alignment
 1 Perform basic grid alignment
 2 Recluster grid only; no alignment
 3 Smooth outer boundary only; no alignment
 11 RESERVED

Basic grid alignment (igalign = 1) instructs DPLR to attempt to move the
outer boundary of the grid to be in better alignment with the bow shock wave and
redistribute the volume points accordingly. More information about this option is
given in the section on grid alignment below, but it is important to note that the
user should first converge an initial solution such that the shock has reached its
final location before attempting an alignment. Because of this, it is an error to set
igalign to 1 other than during a restart from an existing solution.

The basic grid alignment procedure consists of three main steps: moving the outer
boundary to just beyond the shock location, smoothing the outer boundary
surface, and redistributing the interior grid points. The second and third steps can
be run independently if desired by setting igalign = 2 or 3, respectively. Since
these settings do not involve locating the shock, they can be performed at any
time during the solution (even in the first iteration of a new problem).

. ngiter

dpcode V3.05.0

35

This flag controls the frequency at which a grid alignment is performed. The first
alignment always occurs on a restart prior to running the first iteration, and
subsequent alignments (with the total number given by nalign) are performed
every ngiter iterations.

 nalign

Set the total number of adaptions to perform during the simulation. Generally
speaking 2-3 alignments are sufficient to produce high quality solutions. Setting
nalign to 0 is the same as setting igalign to 0.

 imedge

This flag controls the method used to locate the bow shock in the simulation.
Possible choices are:

 1 Align to a constant Mach number contour

At the current time only Mach number based adaption is supported, because it
proved to be the most robust and generally useful choice in preliminary testing.
Additional shock detection methods could be added if desired.

 imradial

This flag controls the type of wall spacing to employ durnig the reclustering of
interior points. Possible choices are:

 1 Constant cell Reynolds number wall spacing
 2 Use a constant wall spacing

If cell Reynolds number spacing is specified (imradial = 1) the code will
attempt to select a wall spacing at every surface point that produces a cell
Reynolds number specified by the cellRe flag. The cell Reynolds number is
defined as:

!

Re
c

=
"c

µ

$
%

&

'
(
w

)*

This will of course result in a wall spacing that varies over the body surface. The
flags ds1 and ds1mx defined below can be used to limit the minimum and
maximum allowable wall spacing, respectively.

dpcode V3.05.0

36

If a constant wall spacing is specified (imradial = 2) the code will set the wall
spacing at all surface locations to be equal to the value specified by the flag ds1.
If ds1 is set to zero, the current wall spacing will be used.

 ngeom

This flag specifies the number of geometrically spaced points to place near the
body surface during reclustering. If ngeom ≤ 2 a pure two-sided Vinokur
stretching routine will be used. ngeom = 2 is the recommended setting for most
problems.

 xxxxx

This flag is not currently used in DPLR and is provided for future expansion.

 fs_scale

This flag specifies the fraction of the freestream Mach number to pick as the
adaption contour. This should be a value close to, but less than one. Smaller
values of fs_scale lead to smoother grids, but increase the chance that the final
outer boundary will not contain the entire shock. The recommended setting for
most problems is a value in the range 0.90 ≤ fs_scale ≤ 0.95.

 ds_mult

This flag specifies how much to grow the outer boundary beyond the location of
the adaption contour. ds_mult is defined as a multiplier on the final grid
spacing at the outer boundary determined via the reclustering routine. The
recommended value for ds_mult is somewhat problem dependent, but values in
the range of 2.5 – 3.0 seem acceptable for most problems.

 gmargin

This flag specifies an optional additional padding or margin to add to the outer
boundary of the grid. It is again defined as a multiplier on the final grid spacing at
the outer boundary. For most problems gmargin can be set to zero. Note that the
gmargin flag can cause the final outer boundary to be larger than the initial in
certain cases. This is a feature in that it allows the boundary to grow if the shock
is too close because of early adaption or insufficient ds_mult. However, the
option should be used with some caution as any growth to the outer boundary is
accomplished via simple linear extrapolation of the grid lines. This can lead to

dpcode V3.05.0

37

large skewness and eventually grid folding if any of the body-normal lines are
convergent.

 ds1

This flag has different meanings depending on the setting of imradial. For
imradial = 1 (cell Reynolds number spacing), ds1 sets the minimum
allowable wall spacing anywhere in the volume. For imradial = 2 (constant
spacing), ds1 sets wall spacing everywhere in the volume. For this option setting
ds1 = 0 causes DPLR to maintain the wall spacing in the current grid.

 cellRe

This flag specifies the value of cell Reynolds number when imradial = 1. It is
silently ignored for other values of imradial.

 dsmx

This flag sets the maximum wall spacing allowed when cell Reynolds number
spacing (imradial = 1) is employed. It is silently ignored for other values of
imradial.

 ds2fr

This flag sets the spacing at the outer boundary of the grid. ds2fr is expressed as
a fraction of the spacing that would be used if an unconstrained (one-sided)
Vinokur stretching algorithm were employed. Values of ds2fr around 0.35 work
well for most simulations.

 xxxxx

This flag is not currently used in DPLR and is provided for future expansion.

Block-Specific Flags

The following flags can be set differently for each block in the simulation. This includes things
like explicit and implicit flux discretizations, inialization, and boundary conditions.

 ntx, nty, ntz

dpcode V3.05.0

38

Set the total number of computational cells in the ijk directions for this block.
These should be set to the number of interior cells (not including dummy or ghost
cells). Note that ntz is only used for 3D flows.

 iconr

This flag has the same permissible values as iinit described above, and is used
only for block-by-block initialization when iinit = 10. For all other cases the
value of iconr is ignored.

 isim

This flag allows the user to selectively eliminate master blocks from the
simulation. Possible choices for isim are:

 0 Do not include block in the simulation
 1 Include block in the simulation

Note that the method used in DPLR to exclude blocks is currently very primitive;
the code still allocates processors to those blocks as if they were being simulated,
but the conserved variables are never updated. Because of this, exluding blocks in
the simulation does not save on the computational intensity of the simulation, and
it seldom used in practice. One of the few purposes of this option is to freeze
problem blocks while the remainder of the solution is allowed to converge
normally.

 ifree

Specify the number of the freestream specification to use for this block. The total
number of freestream specification records in the input deck is specified with the
nfree flag discussed above. The format of each freestream record is given
below. All freestream boundary conditions (ibc = 1) in this block will be
initialized to the specified freestream conditions each time DPLR is run.

 initi

Specify the number of the freestream specification to use to initialize this block.
The total number of freestream specification records in the input deck is specified
with the nfree flag discussed above. The format of each freestream record is
given below. All volume cells in the interior of the block are initialized to the
specified conditions when the problem is first run (iinit = 0), or when
individual blocks are re-initialized (iconr = 0; iinit = 10).

dpcode V3.05.0

39

 (ijk)flx

This flag specifies the method to use to extrapolate the Euler fluxes in the i, j, or k
directions. The method for flux extrapolation can be set separately in each
computational direction. Possible choices are:

 0 No flux evaluation
 1 Upwind modified Steger-Warming with Δp
 2 MUSCL Steger-Warming with Δp [p, cs,

!

r
u ,

!

r
T]

 3 MUSCL Steger-Warming with Δp [ρs,

!

r
u ,

!

r
T]

 4 MUSCL Steger-Warming with Δp [p, cs,

!

r
u ,

!

r
e

i
, T]

 5 Pure 2nd order central difference
 11 Upwind modified Steger-Warming without Δp
 12 MUSCL Steger-Warming without Δp [p, cs,

!

r
u ,

!

r
T]

 13 MUSCL Steger-Warming without Δp [ρs,

!

r
u ,

!

r
T]

 14 MUSCL Steger-Warming without Δp [p, cs,

!

r
u ,

!

r
e

i
, T]

The primary method for flux extrapolation within DPLR is based on a modified
form of the Steger-Warming algorithm, developed by MacCormack and Candler.
This approach is considerably less dissipative than the original form, and has been
shown to be extremely robust for a wide variety of hypersonic and supersonic
flow simulations.

The flux evaulation can be “turned off” in any direction by setting ijkflux = 0,
which can be useful to mimic the simulation of a lower-dimensional problem.

The setting ijkflux = 1, 11 are provided mainly for historical reasons, and uses
a simple upwind stencil to compute the fluxes. The order of accuracy can be
either first or second (set with the ijkord flag discussed below). In the case of
second-order accuracy, a simple pressure gradient based switch is used to drop the
accuracy to first order in the neighborhood of strong shock waves.

The settings ijkflux = 2-4 and 12-14 use a MUSCL-based adaptive stencil to
attain higher-order accuracy via a more sophisticated approach. The difference
between the selections is in the set of variables that are extrapolated to attain high-
order accuracy, and whether a pressure gradient based switch is employed to
smoothly transition from high order to first-order in the vicinity of strong shock
waves. For most problems ijkflux = 2 is the recommended choice. The others
are provided mainly for testing purposes. Note that extrapolation of the conserved
variables via MUSCL limiting is extremely non-robust and is not offered as an
option in DPLR. The various sets of primitive variables provided as options were
found to be the most stable for problems of interest.

dpcode V3.05.0

40

Finally, ijkflux = 5 invokes a simple central difference scheme (when used
with ijkord = 2). This should not be used for problems which contain shock
waves. No explicit dissipation scheme, such as those commonly employed in
subsonic flow simulations, is provided in DPLR, so this method may not be very
stable even for subsonic flows.

 (ijk)ord

This flag specifies the nominal order of accuracy of the Euler flux extrapolation.
Possible choices are:

 1 First-order upwind
 2 Second-order upwind biased
 3 Third-order upwind biased

Generally the third-order upwind biased method (ijkord = 3) is recommended
for all directions and all simulations in DPLR.

 omg(ijk)

This flag specifies the value of ω (as defined by Yee) to employ in the MUSCL
extrapolation scheme. The range of possible ω is dependent on the chosen order
of accuracy of the schem (ijkord) and is given by the expression

!

1.0 "# " 3$%() / 1$%()

where κ = -1 for a second-order scheme and κ = 1/3 for a third-order scheme. The
maximum value of κ is therefore 2 for a second-order scheme and 4 for a third-
order scheme. Larger values of ω bias the MUSCL scheme towards the central
difference stencil, and thus are less dissipative. Note that the input value will be
limited by DPLR at runtime to lie within the range of possible values in the above
equation. A value of approximately 3 is recommended for DPLR at all times; this
value will be reset to 2 for second-order simulations.

 (ijk)lim

This flag specifies the type of flux limiter to employ in the Euler flux
extrapolation. Possible choices are:

 1 Minmod
 2 Superbee
 3 Van-Albada

dpcode V3.05.0

41

The Minmod limiter (ijkord = 1) is recommended for use within DPLR. The
others, while somwwhat less dissipative, are also less stable, and should only be
employed when low dissipation schemes are actually necessary to obtain highly
accurate solutions (such as reactive mixing layer flows).

 (ijk)diss

This flag specifies the type of eigenvalue limiter to employ in the Euler flux
extrapolation. Possible choices are:

 0 No added dissipation
 1 Standard eigenvalue limiting
 2 Standard eigenvalue limiting on linear fields only
 3 Standard eigenvalue limiting on non-linear fields only

Eigenvalue limiters are necessary when using Steger-Warming fluxes to prevent
glitches at sonic and stagnant points in the flow, and are typically required to
obtain robust converged solutions of flows with strong shock waves. Generally
speaking eigenvalue limiters should be used in the radial and circumferential flow
directions, but should be avoided in the body-normal direction when possible to
avoid adding dissipation in the boundary layer. Therefore, the recommended
approach is to set ijkdiss = 0 in the body-normal direction, and ijkdiss = 1
in the other flow directions.

There are some (rare) instances when a normal direction limiter can be very
helpful. In this case it is recommended to either try ijkdiss = 3, which applies
the limiter only to the fluxes with non-linear (u±c) eigenvalues, or to use the kbl
flag defined previously to turn off application of the normal direction limiter
within the boundary layer. However, whenever possible this application should be
avoided.

 eps(ijk)

This flag controls the magnitude of the eigenvalue limiter to employ in the Euler
flux extrapolation. In general, values of approximately 0.3 should be employed
for hypersonic blunt body flow simulations in the radial and circumferential
directions, while 0.0 should be used in the body normal direction. Setting
epsijk = 0.0 is exactly the same as selecting ijkdiss = 0 above. Much lower
values of epsijk (on the order of 0.01) can be employed in separated flows,
which have no strong shocks and are much more sensitive to the effects of added
(artificial) dissipation. DPLR will print a run-time warning if it detects a non-zero
value of epsijk in the body-normal direction in any block.

 iextst

dpcode V3.05.0

42

This flag specifies the time advancement method to employ in the simulation.
Possible choices are:

 1 Explicit first-order Euler
 2 Explicit second-order Runge-Kutta
 -1 Implicit data-parallel line relaxation (DPLR)
 -2 Implicit data-parallel full matrix (FMDP)

Shockingly enough, the recommended method for steady-state problems is the
DPLR method, for which the code is named. For time accurate calculations only
the relatively inefficient second-order Runge Kutta (Midpoint) method is offered
at this time.

 kmax

This flag specifies number of implicit relaxation steps to employ when using the
DPLR or FMDP methods (iextst = -1 or -2). Based on extensive testing during
code development, a value of kmax = 4 is recommended for all simulations.

 ildir

This flag specifies direction in which the lines are to be formed for the DPLR
method (iextst = -1). Possible choices are:

 0 Autodetect direction
 1 i-direction
 2 j-direction
 3 k-direction
 4 Alternate directions

This flag is only used when iextst = -1 (the DPLR method) is selected for time
advancement, and controls the direction in which the lines are formed (block
tridiagonal solutions is aligned). In general the DPLR method is based on the
Gauss-Seidel Line Relaxation (GSLR) method, and the lines should be formed in
the body-normal direction for maximum performance. Setting ildir = 1, 2, or 3
will cause the code to orient the solver in that block so that lines are formed in the
i, j, or k-directions respectively. If DPLR detects that a line is formed in a non
body-normal orientation a warning message will be printed. It is not a fatal error
to run DPLR with the lines in non body-normal directions, but the convergence
rate and stability of the method will be degraded.

For most problems setting ildir = 0 is the best choice. When this option is
selected DPLR will automatically determine the best direction to form the lines
for each block at runtime by examining the block boundary conditions. For those

dpcode V3.05.0

43

blocks for which no body-surface boundary condition is detected the lines will be
formed in the i-direction. For those blocks with a body surface boundary
condition at more than one face the lines will be formed in the direction normal to
the last body surface detected.

Finally the user can select ildir = 4, which causes DPLR to change the
orientation of the lines with each iteration, alternating between i, j, and k-direction
solves. This option was provided mainly for separated flows where there is no
preferred direction, but testing to date has not shown there to be a signifcant
advantage to using this method.

 ibcu

This flag specifies how often to update the implicit boundary conditions during
the relaxation process for DPLR or FMDP (iextst = -1 or -2). This flag is
provided mainly to improve parallel efficiency on machines for which message-
passing is very inefficient, and should in general be set to ibcu = 1, which forces
the implicit boundary conditions to be updated during each relaxation step.

 iblag

This flag specifies whether to lag the implicit boundary conditions when using
DPLR or FMDP (iextst = -1 or -2). Possible choices are:

 0 Do not lag implicit BC’s
 1 Lag implicit BC’s

In general it is desired to lag the implicit boundary condition update in order to
better mask the message-passing latency and improve parallel performance of the
method. However, there are certain instances when the block topology employed
makes lagged BC’s dangerous. Therefore the default setting within DPLR is
iblag = 0, which does not mask any of the implicit latency. It is expected that a
future upgrade to DPLR will be to automatically determine whether latency can
be masked for a given application and the iblag flag will be automatically set
by the code.

 ilt

This flag specifies whether to employ global or local timestepping for implicit
simulations. Possible choices are:

 -1 Global timestepping
 -2 Global timestepping with maximum CFL limit
 1 Local timestepping

dpcode V3.05.0

44

 2 Local timestepping with maximum CFL limit

Testing has shown that local timestepping is extremely unstable when used with
DPLR (iextst = -1). Therefore only global timestepping should be employed
unless iextst = -2.

Occasionally one or more blocks of a complex simulation will be much less stable
than the rest. One example is the region of the vertical tail in space shuttle
simulations. For cases like this the user can specify a maximum CFL number to
employ only for the problem blocks by using ilt = ±2. The maximum CFL
number is set using the cflm flag below.

 ibdir

This flag specifies the grid direction in which to break single block problems for
parallel execution. Possible choices are:

 1 i-direction
 2 j-direction
 3 k-direction

Normally the user must use FCONVERT to decompose the problem for parallel
execution. The one execption is for simulations in which there is only a single
master block with no zonal interfaces (see the FCONVERT users manual for
more information). In this case DPLR can perform the necessary decomposition at
runtime by breaking the problem into planes in the direction chosen with the
ibdir flag. Note that DPLR will print a warning message if ibdir is set such
that the grid is broken in the body-normal direction.

 cflm

This flag specifies the maximum CFL to use in the current master block. This flag
is only used when ilt = ±2.

 ibc

This set of six flags specify boundary condition type to use at each of the six
computational cell faces for each grid block. Possible values of ibc are:

--
Basic Boundaries: 0-29
--

0 Pointwise bc read from bc file

dpcode V3.05.0

45

1 Fixed at freestream conditions
2 Fixed at freestream if inflow; extrapolate if outflow
3 First order extrapolation (supersonic exit)
4 Second order extrapolation (supersonic exit)
5 RESERVED
6 Subsonic reservior inlet; constant mass flow
7 Periodic
8 Inviscid wall (flow tangency)
9 Viscous adiabatic wall

 10 Viscous isothermal wall
 11 180 degree singular axis (u = -u) [3D]
 12 180 degree singular axis (v = -v) [3D]
 13 180 degree singular axis (w = -w) [3D]
 14 Singular x-axis (v = -v) [axi]
 15 Singular y-axis (u = -u) [axi]
 17 Plane of symmetry (u = -u)
 18 Plane of symmetry (v = -v)
 19 Plane of symmetry (w = -w)
 20 Zone boundary
 21 90 degree singular axis (v = -v; w = -w) [3D]
 22 90 degree singular axis (u = -u; w = -w) [3D]
 23 90 degree singular axis (u = -u; v = -v) [3D]
 24 RESERVED
 25 Catalytic isothermal wall
 26 Catalytic radiative equilibrium wall
 27 Non-catalytic radiative equilibrium wall

--
Blowing Wall Boundaries 30-39
--

 30 Viscous isothermal wall with blowing

--
Slip Wall Boundaries 40-49
--

 40 Viscous isothermal wall with slip
 49 Viscous adiabatic wall with slip

--
Input Profile Boundaries 60-69
--

dpcode V3.05.0

46

 60 Input primitive variables (ρs, u, v, w, Tv, T)
 61 Input primitive variables (p,c_s[2-ns],u,v,w,Tv,T)
 62 Input conserved variables (rho_s,rhou,rhov,rhow,Ev,E)

--
material response coupling bcs 70-79
--

70 -- input species mdots and T; get P from extrapolation, Therm-Eq assumed
71 -- input species cs, mdot, and T; get P from extrapolation, Therm-Eq assumed
75 -- activate surface kinetic mechanism, isothermal (icatmd=1001)
76 -- activate surface kinetic mechanism, rad. eq. (icatmd=1001)

--
subsonic inflow/outflow bcs 80-89
--

81 -- Subsonic reservior inlet; same as #6
82 -- Subsonic inlet; specify mass flow rate & T, extrapolate pressure
85 -- Subsonic exit; specify back (static) pressure, extrapolate others

--
pointwise Twall bcs 100-199
these are always 100 + the corresponding isothermal BC number
--

110 -- no slip isothermal wall (10)
125 -- catalytic isothermal wall (25)
130 -- no slip isothermal wall with blowing (30)
135 -- [NOT WORKING] catalytic isothermal wall with blowing (35)
140 -- isothermal wall with slip (40)
145 -- [NOT WORKING] catalytic isothermal wall with slip (45)

--
pointwise Twall && pointwise blowing bcs 200-299
these are always 200 + the corresponding isothermal BC number
--

230 -- [NOT WORKING] no slip isothermal wall (30)
235 -- [NOT WORKING] catalytic isothermal wall (35)

--

dpcode V3.05.0

47

pointwise blowing bcs 300-399
these are always 300 + the corresponding isothermal BC number
--

330 -- [NOT WORKING] no slip isothermal wall (30)
335 -- [NOT WORKING] catalytic isothermal wall (35)

--
bcs 1000-1099
These BC numbers are provided to allow for certain standard BCs
to receive special treatment. Currently supported are 1011:1019 & 1021:1023,
which are standard singular axes or symmetry planes with augmented
eigenvalue limiters in their vicinity, as per the setting of kdg.
When kdg=0 these are indistinguishable from 14:19.
--

1011 -- 180 degree singular axis (u = -u) [3D]
1012 -- 180 degree singular axis (v = -v) [3D]
1013 -- 180 degree singular axis (w = -w) [3D]
1014 -- singular x-axis (axisymmetric)
1015 -- singular y-axis (axisymmetric)
1017 -- plane of symmetry (u = -u)
1018 -- plane of symmetry (v = -v)
1019 -- plane of symmetry (w = -w)
1021 -- 90 degree singular axis (v = -v; w = -w) [3D]
1022 -- 90 degree singular axis (u = -u; w = -w) [3D]
1023 -- 90 degree singular axis (u = -u; v = -v) [3D]

--
bcs 2000-2099
These BC numbers are provided to allow for certain standard BCs
to receive special treatment. Currently supported are 2011:2015 & 2021:2023,
which are standard singular axes with a maximum CFL limit enforced in their
vicinity (ijk<kdg). The cflm flag is used to set the CFL limit in each block.
When kdg=0 these are indistinguishable from 11:15,21:23.
--

2011 -- 180 degree singular axis (u = -u) [3D]
2012 -- 180 degree singular axis (v = -v) [3D]
2013 -- 180 degree singular axis (w = -w) [3D]
2014 -- singular x-axis (axisymmetric)
2015 -- singular y-axis (axisymmetric)
2017 -- plane of symmetry (u = -u)
2018 -- plane of symmetry (v = -v)

dpcode V3.05.0

48

2019 -- plane of symmetry (w = -w)
2021 -- 90 degree singular axis (v = -v; w = -w) [3D]
2022 -- 90 degree singular axis (u = -u; w = -w) [3D]
2023 -- 90 degree singular axis (u = -u; v = -v) [3D]

Freestream Specification Flags

The following flags define a unique set of flow conditions from which all relevant fluid dynamic
quantities can be computed. The user can define any number of freestream blocks (the total
number is given by the nfree flag above), and can use them to initialize blocks and set
freestream boundary conditions on a block-by-block basis, using the initi and ifree flags,
respectively. In all cases input values are in SI units.

 irm

This flag specifies whether a velocity, Mach number, or unit Reynolds number
will be given as input. Possible choices are:

 1 Mach number
 2 Reynolds number per meter
 3 Velocity

The most common (and least ambiguous) input for most free-flight simulations is
velocity, because each of the other entries require the velocity to be derived from
the thermodynamic and transport models employed in the given simulation. If a
Mach number is entered it is assumed to be the equilibrium (as opposed to frozen)
value.

 density

This flag specifies the input freestream mass density.

 M/Re/V

This flag specifies the input Mach number, unit Reynolds number, or velocity,
with the choice determined by the value of irm above. In any case the other two
quantities are then determined by DPLR using the input thermodynamic and
transport models.

 c(xyz)

dpcode V3.05.0

49

These flags specify the input velocity vector direction cosines. The input values of
these flags must be nondimensionalized, i.e. they must satisfy the relation:

!

cx
2

+ cy
2

+ cz
2

=1

The u, v, and w components of the velocity vector

!

V are then defined simply as:

!

u = c
x
V ;

!

v = cyV ;

!

w = c
z
V

 Tin, Tvin, Trin, Tein

These flags specify the input translational, rotational, vibrational, and free
electron temperatures, respectively. Note that the number of unique temperatures
is dependent on the thermal non-equilibrium models chosen with the ivib,
irot, ieex, and iel flags above. DPLR will automatically ignore temperatures
input for modes that are in equilibrium with another mode of the gas. At the
current time free electron non-equilibrium is not supported in DPLR; this flag is
included for future expansion and will be silently ignored at runtime.

It is important to note that only one thermal non-equilibrium model may be
employed in a given simulation; all blocks are assumed to be governed by the
same model. However, each block can have different initial or freestream
temperatures simply be defining multiple freestream specifications and using the
initi and ifree flags in each block specification.

 turbi

This flag is used to specify a freestream turbulence level for the one and two-
equation turbulence models. It is not used for laminar or Baldwin-Lomax
(algabraic) turbulent simulations. In most cases the default value (0.001) is a good
choice; additional information about this parameter is given in the reference
manual.

 tkref

This flag is not currently used in DPLR and is provided for future expansion

 cs

These flags are an array of input species mass fractions. There must be one entry
per species in the chosen chemistry model (as specified in the input *.chem file).

dpcode V3.05.0

50

All input mass fractions must sum to 1.0 or DPLR will exit with an error message.
Note that input of mole fractions is not supported at this time.

CFL Number Listing

The final entries in the DPLR input deck are a list of Courant-Friedreichs-Lewis (CFL) numbers
to employed during the simulation. The CFL number is essentially a measure of the explicit
inviscid stability limited timestep, and is used by convention in CFD codes to enable time
advancement to a steady state solution. For the purposes of DPLR, the CFL number for a given
computational cell is defined as the time it takes the fastest wave in the flow to traverse the
thinnest dimension of the cell:

!

CFL = "t(u + c) /"#

The CFL number is turned into a timestep within DPLR:

!

"t = CFL •"# /(u + c)

but it is important to note that for non-time accurate implicit simulations this is an effective
timestep, and may not correlate to actual flow evolution time. This timestep is in general
different for every computational cell in the flow. However, for most simulations in DPLR the
minum value of Δt at any cell in the flowfield is used for all cells. This is known as global
timestepping. It is also possible to use the local value of Δt for each computational cell to
advance the solution to steady state; this is known as local timestepping, and is offered as an
option in DPLR via the ilt flag. However, extensive testing has shown that the data-parallel
line relaxation method exhibits much better robustness and convergence rate when global
timestepping is employed. Therefore local timestepping is recommended only for simulations
usig the full-maxtrix data-parallel method.

Generally speaking larger CFL numbers imply larger timesteps and faster convergence rates.
However, for a given problem there is generally a stability limit, or maximum CFL number, that
can be used to ensure stable convergence. Employing values above this limit can result in NaN’s
or solution divergence. Unfortunately there is no ready way to determine the limiting timestep
for a given problem a priori. This poses somewhat of a conundrum for users, since the
convergence rate is very strongly correlated to the CFL number up to this limit. Therefore, for
optimum performance it is desireable to run at CFL numbers near, but not over, the stability limit
for a given problem. However, with practice users will learn the approximate range of stable
CFL numbers for a given class of problem.

Early in the solution the flow is very non-linear, which results in fairly small maximum stable
timesteps. However, as the flow evolves towards steady state the maximum timestep typically
increases by several orders of magnitude. Therefore, DPLR employs a CFL ramping process, by
which the CFL number is increased in a step function every 20 iterations. This is accomplished
by typing a list of desired CFL numbers into the input deck. DPLR reads this list at start-up, and
then moves to the next number on the list every 20 iterations until it reaches a -1, which signifies

dpcode V3.05.0

51

that no more entries are available. At this point DPLR will continue on at the last CFL number
until the job is finished. Typically it is preferred to enter CFL number ramps in an approximately
exponential fashion, but this is certainly not required.

However, sometimes it is desired to “hold” a constant CFL number for more than 20 timesteps.
While in principal this could be accomplished simply by repeating the entry in two or more
consecutive lines of the input deck, this could be quite unwieldy in certain situations. Therefore,
DPLR offers the alternative that the user can enter a second tab or space separated number on
any line with a CFL number. This signifies the number of times to “hold” this value during
runtime. For example, the CFL listing:

.1
1.
3. 2
10. 2
30.
100.
-1

will start at a CFL of 0.1, jump to 1 after 20 timesteps and 3 afer 40 timesteps. It will then hold at
three until jumping to a CFL of 10 iteration number 81. This ramping continues until a CFL of
100 is reached.

Each time DPLR is started or restarted the CFL ramp listing is read again from the input deck.
Therefore, on a restart, if it is desired to pick up the solution at the final CFL number employed
during the previous simulation, the CFL list must be edited. For example, on a restart if the CFL
list is edited to look like this:

100.
-1

DPLR will simply start at a CFL of 100 and stay there for the duration of the simulation. Note
that the CFL number can be adjusted while the code is running by using a control (*.ctrl)
file. See below for more information. Placing a “-1” as the first entry of the listing is a runtime
error that will be trapped by DPLR.

It is also possible to enter exact timesteps (Δt) rather than CFL numbers. This is done using
negative numbers in the CFL listing. Typically this is only used for time accurate simulations
when it is desired to run for a user-specified amount of flow time. CFL numbers and timesteps
cannot be mixed and matched in the input listing.

Finally, it is important to note that for most problem the maximum stable timestep is more a
function of the physics of the simulation than the computational grid employed. Therefore, the
stable CFL number will be a strong function of the wall spacing, since tighter wall spacing will
result in larger CFL numbers to achieve the same implicit timestep. For this reason the user may
notice a wide range (possibly orders of magnitude) in the maximum stable timstep for a given

dpcode V3.05.0

52

vehicle trajectory sweep, while in fact the maximum stable timestep for the set of problems may
be more constant.

dpcode V3.05.0

53

APPENDIX: Release Notes for Version 3.05.0

UPGRADES:

v3.05.0 -- upgraded/enhanced support of Mitcheltree style catalysis models
 -- include electrons in viscosity and thermal conductivity calculations
 -- added support of control (*.ctrl) file to change CFL number
 -- add uncoupled Spalart-Allmaras turbulence model
 -- get 2D SST working (DPLR2D)
 -- add automatic grid alignment feature
 -- improve NaN trap to work on altix
 -- add itshk to cfd input deck
 -- add some capability of restarting a turbulent solution with a different

turbulence model
 -- add Chapman viscosity model
 -- write a log file (*.log)
 -- added some stuff for MPI-2 compatibility, necessary for proper function on

64-bit systems [provided by Heath Johnson, University of Minnesota]

BUGLIST:

v3.05.0 -- FIXED BUG: small error in Mitcheltree catalysis model
 -- FIXED BUG: could not have a catalytic wall unless chemistry was turned on
 -- FIXED BUG: not writing correct catalysis constants to restart when material

map used
 -- FIXED BUG: introduced in v3.04; internal thermal conductivities computed

incorrectly for ivib = 4

